AA TANKS

DIAPHRAGM EXPANSION TANKS

Sizing for Hydronic Heating/Cooling Systems

Job Name:	Date:	
Job Location:	Salesman:	
Contact Name:	Model #:	
Information Required:		
1. Total system water content.		gallons
2. Temperature of water when syster	m is filled.	°F
3. Average maximum operating temp	oerature	°F
4. Minimum operating pressure		PSIG
5. Maximum operating pressure (10% valve)	% below relief	PSIG
Model Selection:		
Enter total system water content. (above)	(from line 1.	gallons
7. Using the expansion factor table, f the expansion factor.	find and enter	
8. Multiply line 6 by line 7. Enter expandance.	anded water	gallons
Using acceptance factor table, find the acceptance factor.	d and enter	
10. Divide line 8 by line 9, enter total required.	tank volume	gallons
Line 8 gallons Expanded V (acceptance volume)	Vater	
Line 10 gallons total tank v	volume	
Select diaphragm expansion tank NTA Models must satisfy both NLA Models are selected by g NVA Models are selected by g For large systems, multiple tanks car	allons only from line allons only from line	e 10. e 10.

CAUTION: This chart is for water only. For expansion factors for glycol solutions contact AAtanks

AA TANKS

EXPANSION FACTOR TABLE

For Calculating the Net Expansion of Water

CAUTION: This chart is for water only. For expansion factors for glycol solutions contact AA Tanks.

FINAL						INITIAL	TEMPER	ATURE °F					
TEMP F.	40	45	50	55	60	65	70	75	80	85	90	95	100
50°	.00006	.00008	-										
55°	.00025	.00027	.00019	_									
60°	.00055	.00057	.00049	.00030	_								
65°	.00093	.00095	.00087	.00068	.00038								
70°	.00149	.00151	.00143	.00124	.00094	.00056	-						
75°	.00194	.00196	.00188	.00169	.00139	.00101	.00045						
80°	.00260	.00262	.00254	.00235	.00205	.00167	.00111	.00066	_				
85°	.00326	.00328	.00320	.00301	.00271	.00233	.00177	.00132	.00066	9-9			
90°	.00405	.00407	.00399	.00380	.00350	.00312	.00256	.00211	.00145	.00079	-		
95°	.00485	.00487	.00479	.00460	.00430	.00392	.00336	.00291	.00225	.00159	.00080	-	
100°	.00575	.00577	.00569	.00550	.00520	.00482	.00426	.00381	.00315	.00249	.00170	.00090	_
105°	.00671	.00673	.00665	.00646	.00616	.00578	.00522	.00477	.00411	.00345	.00266	.00186	.00096
110°	.00771	.00773	.00765	.00746	.00716	.00678	.00622	.00577	.00511	.00445	.00366	.00286	.00196
115°	.00879					.00786		.00685	.00619		.00474		.00304
120°	.01004	.01006	.00998	.00979	.00949	.00911	.00855		.00744				.00429
125°	.01111	.01113	.01105	.01086	.01056	.01018	.00962	.00917	.00851	.00785	.00706	.00625	.00536
130°	.01236	.01238	.01230		.01181			.01042					.00661
135°	.01368							.01174					.00793
140°	.01501							.01307			.01096		.00926
145°	.01643	.01645	.01637	.01618	.01588	.01550	.01494	.01449	.01383	.01317	.01238	.01158	.01068
150°	.01787	.01787	.01779	.01760	.01730	.01692	.01636	.01591	.01525	.01459	.01330	.01300	.01210
155°								.01743					.01362
160°	.02092					.01999			.01811		.01652		.01482
165°	.02252							.02058					.01677
170°								.02224					.01843
175°	.02588	.02590	.02582	.02563	.02533	.02495	.02439	.02394	.02328	.02262	.02183	.02103	.02013
180°								.02569					.02188
185°	.02941							.02747			.02536		.02366
190°	.03127	.03129	.03121	.03102	.03072	.03034	.02978	.02933	.02867	.02801	.02722	.02642	.02552
195°	.03314	.03316	.03308	.03289	.03259	.03221	.03165	.03120	.03054	.02988	.02909	.02829	.02739
200°	.03510	.03512	.03504	.03485	.03455	.03417	.03361	.03316	.03250	.03184	.03105	.03025	.02935
205°	.03707	.03709	.03701	.03682	.03652	.03614	.03558	.03513	.03447	.03381	.03302	.03222	.03132
210°	.03911							.03717					.03336
215°								.03926					
220°								.04141					
225°	.04549	.04551	.04543	.04524	.04494	.04456	.04400	.04355	.04289	.04223	.04144	.04064	.03974
230°								.04568					
235°								.04797					
240°								.05026					
245°								.05255					

AA TANKS

ACCEPTANCE FACTOR CHART

This table incorporates atmospheric pressure (14.7 psi at sea level)

USE GAGE PRESSURE. Example: A system operating between a minimum operating pressure of 20 psig (fill pressure) and a maximum operating (usually 10% below the relief valve setting) of 40 psig has an acceptance factor of 0.366. To find the acceptance factor, start at the top of the table and locate the minimum operating pressure. Next, locate the minimum operating pressure on the left index. Where the two lines intersect is the acceptance factor.

(Use GaugePressure)

PRESSURE PSIG 5 10 12 15 20 25 30 35 40 45 50 10 0.202 12 0.262 0.075 15 0.337 0.168 0.101 20 0.432 0.288 0.231 0.144 25 0.504 0.378 0.328 0.252 0.126 -	55
12 0. 262 0. 075 15 0. 337 0. 168 0. 101 20 0. 432 0. 288 0. 231 0. 144 25 0. 504 0. 378 0. 328 0. 252 0. 126 —	
15 0. 337 0. 168 0. 101 20 0. 432 0. 288 0. 231 0. 144 25 0. 504 0. 378 0. 328 0. 252 0. 126 —	
20 0. 432 0. 288 0. 231 0. 144 25 0. 504 0. 378 0. 328 0. 252 0. 126 -	
25 0. 504 0. 378 0. 328 0. 252 0. 126 -	
27 0.527 0.408 0.360 0.288 0.168 -	
30 0.560 0.447 0.403 0.336 0.224 0.112	
35 0.604 0.503 0.463 0.403 0.302 0.202 0.101	
40 0.640 0.548 0.512 0.457 0.366 0.274 0.183 0.091	
45 0. 670 0. 586 0. 553 0. 503 0. 419 0. 335 0. 251 0. 168 0. 084 —	
50 0.696 0.618 0.587 0.541 0.464 0.386 0.309 0.232 0.155 0.078	
55 0.717 0.646 0.617 0.574 0.502 0.430 0.359 0.287 0.215 0.144 0.07	ž.
60 0. 736 0. 669 0. 643 0. 602 0. 536 0. 469 0. 402 0. 335 0. 268 0. 201 0. 13	1 0.067
65 0.753 0.690 0.665 0.627 0.565 0.502 0.439 0.376 0.314 0.251 0.18	8 0.125
70 0. 767 0. 708 0. 685 0. 649 0. 590 0. 531 0. 472 0. 413 0. 354 0. 295 0. 23	6 0. 177
75 0.780 0.725 0.702 0.669 0.613 0.558 0.502 0.446 0.390 0.333 0.27	
80 0.792 0.739 0.718 0.686 0.634 0.581 0.528 0.475 0.422 0.370 0.31	
85 0.802 0.752 0.732 0.702 0.652 0.602 0.552 0.502 0.451 0.401 0.35	
90 0.812 0.764 0.745 0.716 0.669 0.621 0.573 0.525 0.478 0.430 0.38	
95 0. 820 0. 775 0. 757 0. 729 0. 684 0. 638 0. 593 0. 547 0. 501 0. 456 0. 41	0.365
100 0.828 0.785 0.767 0.741 0.698 0.654 0.610 0.567 0.523 0.479 0.43	6 0.392
105 0.835 0.794 0.777 0.752 0.710 0.668 0.626 0.585 0.543 0.501 0.45	9 0.418
110 0.842 0.802 0.786 0.762 0.723 0.682 0.642 0.601 0.561 0.521 0.48	0. 441
115 0.848 0.810 0.794 0.771 0.734 0.694 0.655 0.617 0.578 0.540 0.50	0.463
120 0.854 0.817 0.802 0.780 0.742 0.705 0.668 0.631 0.594 0.557 0.52	0.483
125 0.859 0.823 0.809 0.787 0.752 0.716 0.680 0.644 0.608 0.573 0.53	
130 0.864 0.829 0.815 0.795 0.760 0.726 0.691 0.657 0.622 0.586 0.55	
135 0.868 0.835 0.822 0.802 0.768 0.735 0.701 0.668 0.635 0.601 0.56	
140 0.873 0.840 0.827 0.808 0.776 0.743 0.711 0.679 0.847 0.614 0.58	
145 0.877 0.845 0.833 0.814 0.783 0.751 0.720 0.689 0.858 0.828 0.59	5 0.564
150 0.880 0.850 0.838 0.820 0.789 0.759 0.729 0.699 0.668 0.638 0.60	
155 0.884 0.854 0.843 0.825 0.795 0.766 0.736 0.707 0.677 0.648 0.61	
160 0.887 0.859 0.847 0.830 0.801 0.773 0.744 0.716 0.687 0.658 0.83	
165 0.890 0.863 0.851 0.835 0.807 0.779 0.751 0.124 0.696 0.668 0.64	
170 0.893 0.866 0.855 0.839 0.812 0.785 0.758 0.731 0.704 0.677 0.64	9 0.622

NOTE: For pressures not shown above, use 1 - (P_f + atmospheric ÷ P_0 + atmospheric)